Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.
نویسندگان
چکیده
The transition from aquatic to aerial respiration is associated with dramatic physiological changes in relation to gas exchange, ion regulation, acid-base balance and nitrogenous waste excretion. Arapaima gigas is one of the most obligate extant air-breathing fishes, representing a remarkable model system to investigate (1) how the transition from aquatic to aerial respiration affects gill design and (2) the relocation of physiological processes from the gills to the kidney during the evolution of air-breathing. Arapaima gigas undergoes a transition from water- to air-breathing during development, resulting in striking changes in gill morphology. In small fish (10 g), the gills are qualitatively similar in appearance to another closely related water-breathing fish (Osteoglossum bicirrhosum); however, as fish grow (100-1000 g), the inter-lamellar spaces become filled with cells, including mitochondria-rich (MR) cells, leaving only column-shaped filaments. At this stage, there is a high density of MR cells and strong immunolocalization of Na(+)/K(+)-ATPase along the outer cell layer of the gill filament. Despite the greatly reduced overall gill surface area, which is typical of obligate air-breathing fish, the gills may remain an important site for ionoregulation and acid-base regulation. The kidney is greatly enlarged in A. gigas relative to that in O. bicirrhosum and may comprise a significant pathway for nitrogenous waste excretion. Quantification of the physiological role of the gill and the kidney in A. gigas during development and in adults will yield important insights into developmental physiology and the evolution of air-breathing.
منابع مشابه
The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders.
Several times throughout their radiation fish have evolved either lungs or swim bladders as gas-holding structures. Lungs and swim bladders have different ontogenetic origins and can be used either for buoyancy or as an accessory respiratory organ. Therefore, the presence of air-filled bladders or lungs in different groups of fishes is an example of convergent evolution. We propose that air bre...
متن کاملSeasonality Influence on Biochemical and Hematological Indicators of Stress and Growth of Pirarucu (Arapaima gigas), an Amazonian Air-Breathing Fish
Environmental factors such as seasonal cycles are the main chronic stress cause in fish increasing incidence of disease and mortality and affecting productive performance. Arapaima gigas (pirarucu) is an Amazonian air-breathing and largest freshwater fish with scales in the world. The captivity development of pirarucu is expanding since it can fatten up over 1 kg per month reaching 10 kg body m...
متن کاملThe autonomic control and functional significance of the changes in heart rate associated with air breathing in the jeju, Hoplerythrinus unitaeniatus.
The jeju is a teleost fish with bimodal respiration that utilizes a modified swim bladder as an air-breathing organ (ABO). Like all air-breathing fish studied to date, jeju exhibit pronounced changes in heart rate (fH) during air-breathing events, and it is believed that these may facilitate oxygen uptake (MO2) from the ABO. The current study employed power spectral analysis (PSA) of fH pattern...
متن کاملRespiratory and hydrostatic functions of the intestine of the catfishes Hoplosternum thoracatum and Brochis splendens (Callichthyidae).
1. The air-breathing behaviour of Hoplosternum thoracatum and Brochis splendens has been studied and their strategy of coordinating the respiratory and hydrostatic functions of the accessory respiratory organ has been examined. 2. H. thoracatum and B. splendens are continuous but not obligate air-breathers and individuals of the former breathe air in synchrony with each other. 3. Frequency of a...
متن کاملTHE EFFECT OF ARTERIAL O2 SATURATION AND HE ART RATE ON BLOOD PRESSURE DURING HYPOXIA
A periodic increase in blood pressure (BP) occurs during apneic episodes in patients with obstructive sleep apnea (OSA). Several factors including hypoxemia and an increase in heart rate (HR) were reported to be responsible for this increased BP. To examine the contribution of these two factors in increasing BP, 35 healthy male subjects (mean age±SD= 23.64±3.80) were studied in three experi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 207 Pt 9 شماره
صفحات -
تاریخ انتشار 2004